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SUMMARY

The magnetization and magnetostriction study reported here is part
of a research program undertaken to determine the nature of the magneto-
striction in the rare earth (R)-Fe2 compounds. In this paper is detailed
the correlation between the magnetOostriction and magnetization for TmFez.
Studies were made as a function of temperature from 4°K to 300°K.

TmFez, because of its highly anisotropic 4f charge distribution,
displays a huge magnetocrystalline anisotropy (K,) and magnetostriction
(A 1 ) at cryogenic temperatures in spite of the high cubic symmetry of the
Clg }attice and the tetrahedral symmetry of the Tm~ site. Magnetostriction
measurements are consistent with ]Al 1|>>|>\ |, and yield a saturation value
of A 1. -3520 x 10 ~. The tempera%ure dependence of Xlll closely follows
sing}e-ion magnetoelastic theory.

The study was carried out in the Solid State Branch of the Radiation
Division as part of the research program on magnetostrictive material.
The research was sponsored by the Office of Naval Research (PO _4-0081, NR
039-110) and the NSWC Independent Research Funds.
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LOW TEMPERATURE MAGNETIZATION AND MAGNETOSTRICTION OF SINGLE CRYSTAL TmFe., *

2

R. Abbundi and A. E. Clark
Naval Surface Weapons Center
White Oak, Silver Spring, MD 20910

ABSTRACT

The magnetization and magnetostriction of single
crystal TmFe, were measured as a function of tempera-
ture from 4K to 300K. TmFe~, because of its highly
anisotropic 4f charge distribution, displays a huge
magnetocrystalline anisotropy (K;) and magnetostriction
(A111) at cryogenic temperatures in spite of the high
cubic symmetry of the C15 lattice and the tetrahedral
symmetry of the Tms‘qsite. The anisotropy spans the
range from -5.3 x 10° erg/cm3 at room temperature to
the extrapolated value of -5 x 108 erg/cm”® at 0 K. The
saturated magnetic moment was found to be 74 emu/g,
which is substantially larger than previous polycrystal-
line results. Magnetostriction measurements are con-
sistent with |x;.,!>>[A;50|, and yield a saturation val-
ue of 111;(0) = :&szo x ?8‘6, which is appreciably
larger than that previously reported. The rapid fall
of the Tm3* sublattice moment with temperature results
in a rather low value of Ayy; = -210 x 10-6 at 300K.
The temperature dependence of Aj;; closely follows
single-ion magnetoelastic theory.

INTRODUCTION

Despite the overall cubic symmetry and the high
local symmetry at the rare earth site, the rare earth-
Fe, compounds possess huge magnetostrictions and mag-
netic anisotropies, which extend, in many cases, as
high as room temperature. The compounds TbFe; and
SmFe, yield magnetostrictions: fl(300K1[>2000 ppm. _{1]
TbFe, and DyFe; possess anisotropies: |Kj(300K) >107
erg/cm3. [1,2] These compounds have relatively satu-
rated rare earth magnetizations at room temperature,
thus only moderate increases in magnetostriction and
anisotropy occur at reduced temperatures.

TmFe; however, possesses a rather small magneto-
striction and magnetic anisotropy at room temperature.
Here we show that this is directly correlated with the
rather low value of the Tm3* sublattice moment at room
temperature. In this paper, we report magnetization
measurements on single crystal TmFe;. From the aniso-
tropy in the moment we determine the magnetocrystalline
anisotropy, K]. Finally we measure A1) for TmFe, from
6-300 K. Temperature dependences are compared to those
calculated from single-ion theory. Intrinsic values are
compared to those of other RFe; compounds using Stevens'
equivalent operator coefficients.

MAGNETIZATION

The ferrimagnetic nature of TmFe; was identified by
Wallace and Skrabek [3] and by Burzo [4] with magnetiza-
tion measurements on polycrystalline samples. A com-
pensation temperature was observed in TmFe) at approxi-
mately 240 K, indicating a rapid drop of Tm3* sublattice
moment with increasing temperature. In addition to this
rapid decrease, the intrinsic (T=0) moment itself was
reported to be very low, too low to be consistent with
reasonable assumptions of rare earth and iron sublattice
moments. Because of the potentially high anisotropy of
TmFe, inferred from measurements on other RFe;'com-
pounds, [2] such a low value could result from non-iso-
tropic polycrystalline samples.

The single crystals of TmFe; used in this experi-
ment were grown by O. D. McMasters by horizontal zone
techniques. [5] 1In Fig. 1, we show the spontaneous
magnetic moment of single crystal TmFe) along its
crystallographic [111] easy axis. While the room tem-
perature moment is similar to that observed earlier in
polycrystals by Wallace [3] and Burzo, [4] the low-tem-
perature moment (og(o)) is substantially larger. Fig. 2

principal directions at room temperature. A huge mag-
netic anisotropy is prcsent at low temperaturcs.

Taking the saturation moment from Fig. 1 to be 74 emu/g
(3.72up) and a gJ value of 7up, for Tm3*, we calculate

a Fe moment of 1.64up, in good agreement with that of
other RFe; compounds. [4,6,7] A rare earth moment, up,
less than 7up, would result in a correspondingly smaller
iron moment, Wge. In the single crystal, the compensa-
tion point is sﬁifted only slightly from the earlier
measurements on polycrystals.

"llfﬁz

—e— SINGLE CRYSTAL (111]
—== POLYCRYSTAL (AFTER BURZ0)
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Fig. 1 Spontaneous magnetic moment of single crystal
TmFe; as a function of temperature.
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MAGNETOSTRICTION

Because of the rapid fall of the sublattice moment
with temperature, we expect a very low value of magneto-
striction at room temperature for TmFe,. Indeed thisis
the case for polycrystalline TmFe; . Ag = -123 x 10-6.
[1] The single crystal value, Ajj}, 1s not much higher
(see Fig. 3). Since A111>> XAjgg for the TbxDy] -xFe;
ternary alloys,[8] it is plausible that here Aj11>>Ajq;
hence Ag = .6 A11] for TmFe;. From measurements at 6 K
we find the saturation value of A1;;(0) = -3520 x 10-6.

96 D8 LR g 2 i T M T oy ]
-3500 - -
3000 T=6.0K -

1
-2500 TmFe, 3

- it A ]

‘: *

£ -200 =<0

i 1=300 K :

150 T
-100 5
-50 -1

[|] S SN I AR SRS e

0 ] 10 15 20 25

H(kOe)
Fig. 3 M1 of single crystal TmFez at T = 6.0 K and
T ="300K.

This does not agree with the earlier value of -2600 x
10-6 reported by Barbara.[9] In Table I, our value of
X111(0) is compared to the value for TbFe;, estimated
previously from 100 K measurements.[10] Following
Stevens;[11] A111(0) = C a J(J-1/2)<r§>. where J is the
angular momentum quantum number, a is the ''Stevens'
factor'" and <rp is the average radius squared of the 4f
electron cloud.[12] The agreement between TmFe, and
TbFe; is excellent. Taking C = -0.017 + 10% ag‘ the
intrinsic magnetostrictions of the R3* ions in the RFe,
lattice are calculated. Note that the largest "+ mag-
netostrictions are predicted for CeFe;, PrFe;, TbFe, and
DyFe;, and the largest "-" magnetostrictions for SmFey,
TmFe; and YbFe;. Since Ce is essentially always quad-
rivalent; Yb, divalent; and PrFe; does not crystallize
into Laves phase structure, the remaining compounds are
TbFe,, DyFe;, SmFe; and TmFe;.

Table I. llll(O) of RsoFe2 Compounds

R J ax10° <rp(a?) A1 (@x10°

Ce 5/2 -5.72 1.20 5660

Pr 4 -2.10 1.086 5280

Nd  9/2 -0.643 1.001 1920

Sm /2 4.13 .883 -3010 .
T 6 -1.01 .756 4160(4400°)
Dy 15/2 -0.635 .726 4000

Ho 8 -0.222 .696 1540

Er 15/2 0.254 .666 -1470

Tm 6 1.01 .639 -35202

Yo 7/2 3.18 .613 -3370

a. This paper.
b. A. Clark, R. Abbundi, H. Savage and 0. McMasters,
Physica 86-88B, 73 (1977).

A small forced magnetostriction is observed at all
temperatures above 15 K. Fig. 4 illustrates this be-
havior near Tcomp- Below 234 K, the magnetostriction
increases with magnetic field as the rare earth sublat-
tice becomes further aligned. Above T.omp, where the
rare earth sublattice points antiparallel to the field,
the magnetostriction decreases with increasing field.
Near magnetization compensation, where op =Ofge; it is
difficult to rotate the moments in the sample from one
crystallite direction to another. Thus the full magneto-
striction is not sensed, resulting in a dip in observed
values. Precisely at T.gpn, the field is perpendicular
to the moments, resulting in an effective magnetostric-
tion (as referred to field axes) of opposite sign.

T o i i e e e e e
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s AR TmFey }
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Fig. 4 1jj; of single crystal TmFe, near T.,n
extrapolated to li = 0 and for H = ZSkog.

It has been observed previously [10] that the tem-
perature dependence of A\1;; for TbFe; can be fit by the
single-ion expression: Il»l/zlifl(mk)] of Callen and

Callen [13] for ¢=2. Here 3101/2 is a reduced Bessel
function; 1'1, the inverse Langevin function; and mg,
the reduced rare earth sublattice magnetization (MR(T)/
MR(0)). In TbFe; the sublattice magnetization [9,14]
drops by only ~13% and the temperature dependence 2
follows closely the low temperature expansion: mﬁ‘l‘l)/

= mg. [10] 1In TmFe,, a good test of the single-ion
expression over a wide temperature range can be ob-
tained since, at 300 K, mp = .3. To calculate the the-
oretical magnetostriction, it is necessary to know the
normalized sublattice moment, mp, as a function of tem
perature. This can be determined directly from neutron
diffraction data, or from the total magnetization i.e.
Fig. 1, subtracting off the contribution of the Fe sub-
lattice. The currently known neutron diffraction data
is not sufficiently accurate to determine mp(T) with
the required precision. (The neutron diffraction data
of both Rhyne [14] and Barbara [9] do not yield a com-
pensation point in the correct temperature region.)
Hence, here we shall determine mp(T) from the total
magnetization curve (Fig. 1) minus MFe(T), where Mg (0)
is estimated from the rare earth moment of gJ. In

Fig. 5, we show the temperature dependence of );;; from
0 K to 300 K. We assume a small temperature dependence
for Mg, (T) consistent with a variety of sources. [14,
15,16f The dashed line is the calculated curve with
Mge = 1.64 uy and a 15% reduction in Fe moment from0 K
to 300 K; the dash-dot line is a similar curve for a
20% reduction. A small (v3%) reduction of the rare
earth moment from gJ, results in less than a few per-
cent change in the calculated magnetostriction over the
entire temperature range. The agreement between exper-
iment and calculated curves is excellent.
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Fig. 5 Ajj; as a function of temperature of single
crystal TmFe,. The dashed curves represent the
magnetostriction calculated from single-ion
theory.

From the foregoing observations, we conclude that
the magnetostriction, Aj1], of the RFe; compounds can be
determined from:

M = Ca J@-1/2) <« I 1! mpl,

with C = -0.017 + 10% a;z.

Since x111>>x100, A =3 *111/5' (2)

s
MAGNETIC ANISOTROPY

The magnetization curves at room temperature (Fig.
2) reveal anisotropy fields Hjpp and Hj;, of 11 kOe and
6 kOe respectively. From these values we calcglatero m
temperature anisotrogy constants: K; = -5.3x10%erg/cm
and |Ky| < 10%erg/cm3. Similar curves are found for
T=200, 150, and 97 K. Below 97 K, it was impossible to
determine H; 0 and Hyjo with the available magnetic
fields. In gxg. 6, &1 (= MH 00/2) is plotted vs temper-
ature and compared to the ca*culated temperature depen-
dence arising from the single-ion model: [13]
1,‘,1/5[!‘1(%‘)] where & = 4. The theoretical tempera-
ture dependence is in good agreement with the data,
yielding an extrapolated value of -K;(0) = 5x108erg/cm3.

According to the Stevens' equivalent operator co-
efficients, [11] the value of K;(0) varies according to
C 8J(J-1/2)(2J2-5J+3)<r§>. This function does not de-
pend strongly on rare earth ion. In agreement with this
relationship, our extrapolated value of -5x108erg/cm3
for TmFe; is cloge to that of -5x108erg/cm3 for ErFe;
[17] and -4.4x10° estimated for TbFe,. (2]

We gratefully acknowledge the help of W. Gillmor
for the magnetic moment measurements of TmFe;.
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Fig. 6 K; of single crystal TmFe, as a function of
temperature. The dashed curves represent the
anisotropy calculated from single-ion theory.
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